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A non-linear controllable ~mamical system with many degrees of freedom, described by Lagrange equations of the second kind, 
is considered. Geometric constraints are imposed on the magnitudes of the controls. It is assumed that, in the equations of motion, 
the kinetic energy matrix is close to a certain constant diagonal matrix. It is possible, for example, to reduce the equations of 
motion of robots, the drives, of which have large gear ratios, to a system of this kind. A problem is forraulated on the transfer of 
a system in a finite time from a specified initial state to a final state with zero velocities. The method of decomposition [1] is 
used to construct the equations. Sufficient conditions are found subject to which the maximum values of the non-linear terms 
in the equations of motion do not exceed the permissible magnitudes of the controls. In this case, non-linearities are treated as 
limited perturbations and the system is decomposed into independent, linear, second-order subsystems. A feedback control is 
specified for these subsystems which guarantees that each of them is brought into the final state for any permissible perturbations. 
The control has a simple structure. Applications of the proposed approach to problems in the control of manipulating robots 
are considered. © 1998 El~'Mer Science Ltd. All rights reserved. 

This paper is related to [1--4] but other conditions for the implementation of the method of decomposi- 
tion are given here. Another method for controlling dynamical systems, based on decomposition, has 
also been proposed in [5, 6]. 

1. FORMULATION OF THE PROBLEM 

A non-linear controllable dynamical system with n degrees of freedom is considered. The motion of 
this system is described by the Lagrange equations 

d ~T ~T 
- -  = Ui + Q, (1 .1 )  

dt ¢)qi ~ql 

Here, q ffi (ql, • • •, qn) is a vector of the generalized coordinates, q ¢ D C R ~, Ui are the generalized 
controlling forces to be determined, Qi are the other generalized forces and T is the kinetic energy of 
the system, which is given by the quadratic form 

T(q, i l ) = l  (A(q)il, il) 1 
2 j,t 

(1.2) 

where A(q)  is a syn~metrie positive-definite matrix with elements Ajk(q). Above and everywhere 
henceforth, the subscripts i , j  and k take the values 1, 2 , . . . ,  n. 

The domain D, in which the motions of the system being considered can occur, is specified in the 
form of independent oanstraints on the coordinates qi 

n = {q: q~- ~ q, ~ q~" } (1.3) 

Constraints are also imposed on the generalized control forces 

I Uil<~ U°i (1.4) 

We will make certain simplifying assumptions concerning the kinetic energy and the generalized forces 
Qi. It is assumed that the matrixA(q) from (1.2) can be represented in the form 
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A ( q ) =  l+fii(q), l = d i a g ( l j  . . . . .  In), I i = c o n s t > 0  (1 .5)  

where,4(q) is a symmetric matrix such that, for any n-dimensional vector z, the inequality 

1.4(q)zl~ < glzl, ~t > 0, Vq ~ D (1.6) 

is satisfied. Here  ~t is a sufficiently small parameter, possible values of which are indicated below. 
Furthermore, we assume that 

t OA# I Oqil<~ c, c = const  > 0 

and that the generalized forces Qi can be represented in the form 

(1.7) 

Qi = Gi + Fi (1.8) 

Here Gi(q, q, t) are restricted forces, the magnitudes of which do not exceed the permissible values of 
the control forces, that is 

IGil6 G °, G ° < U ° (1.9) 

where Gi 0 are specified constants. Note that, if the inequality Gi 0 > Ui 0, which is the inverse of (1.9), 
holds for certain i then the system can be uncontrollable. 

The forces, which are sufficiently small at low velocities and satisfy the constraints 

I F /I~  < al ql+b1412 (1 .10)  

where a and b are certain positive constants, are denoted by Fi(q, il, t) in (1.8). The exact form of 
the functions Gi(q, il, t), Fi(q, q, t) in (1.8) may be unknown. 

We now formulate the control problem. 

Problem 1. It is required to determine the control functions Ui(qi, qi) which satisfy constraints (1.4) 
and ensure that system (1.1) is transferred from a specified initial state 

q ( 0 ) = q ° ,  4 ( 0 ) = 4  0 ' q 0 e D  (1.11) 

to a specified final stationary state 

q(x) = ql, q(x) = 0, ql ~ D (1.12) 

The time of the control process x is finite and is not fixed. Without loss of generality, the initial instant 
of time is taken to be equal to zero. 

2. D E C O M P O S I T I O N  OF T H E  S Y S T E M  

The method of decomposition, proposed in [1], is used to solve the problem. We substitute expression 
(1.2) for the kinetic energy T into (1.1) and write the equations of motion in the vector form 

A(q)~! = U +G + S( q,4,t) (2.1) 

Here U = (U1 . . . . .  Un) is the vector of the controls, G = (Gb.  • . ,  Gn) is the vector of the restricted 
forces (1.9), and S = ($1 . . . . .  Sn) is a vector-function with the components 

Si(q,~l,t) = Fi(q,4,t)+ ~ ( 1  ~A# ~Aij ~. . 
j,kt, 2 ~qi "~qk ) qjqk 

(2.2) 

Note that the quantities Si vanish when q = 0. 
We multiply both sides of Eq. (2.1) by/A -I (the matrix I has been introduced in (1.5)) and obtain 
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t ~  = ui + v,. 

vii = G i + S i - [ A A - t ( U  + G +  S)]i 

(2.3) 

(2.4) 

System (2.3), (2.4) ~[s equivalent to the initial equation (2.1). 
We assume that the inequalities 

Iv~l<~p:U °, pi <1 (2.5) 

hold, where Pi are certain constants. We shall treat the functions V~ in (2.3) as independent rostricted 
perturbations. In this case, the initial non-linear system is decomposed into n linear subsystems, subjected 
to the perturbations, where each subsystem has a single degree of freedom. To solve Problem 1, it is 
therefore sufficient to solve the n simpler control problems for the second-order subsystems (2.3). 

The control law for each of these control systems is presented in Section 3. The conditions under 
which inequalities (2.5) are actually satisfied are found in Section 4. 

3. CONTROL OF A LINEAR SUBSYSTEM 

As has been done previously in [1], we shall specify the scalar control Ui which transfers the ith 
subsystem (2.3) in a finite time from the arbitrary initial state (q0, qO) to the final state (q~, 0) for any 
permissible perturbation V/, which satisfies (2.5) in the form of a synthesis 

Ui (qi, qi ) = UO sign ~1 i (qi, qi ), ~li ~11:0 

Ui(qi ,qi  ) m -U°i signqi, ~/i ---- 0 

viCq~,,h) = q~ - q l  -qi lqi l /C2x~) 

(3.1) 

Here X/is the positive control parameter 

xi = ~ ° ( l - p , ) / t ~  (3.2) 

Note that the value: of X/is unknown up to now, since the constant Pi is unknown. 
The above-mentioned control was obtained as the time-optimal control in a game problem in which 

Ui and V/are considered as the controls of two players [7]. This control is a bang-bang control and takes 
its limiting permissible values of Ui = ± U °. The  switching curve (SC) ¥i(qi, qi) = 0 consists of two para- 
bolic branches which are symmetric about the point (q~, 0). 

We will now specify the set f~i in the two-dimensional phase space of the ith subsystem (Fig. 1) 

Fig. 1. 
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-~ + ~i  {(qi,ili): q7 <~qi ~q i  , fi- <~ili ~<f/+} (3.3) 

f i - (q i )=-[2Xi (q i -q~)]  Y2, f .+(qi)=[2Xi(q+-qi)] ~ 

We will describe the nature of the motion of subsystem (2.3) in the case when the control is specified 
in the form (3.1), (3.2) and the initial point (qO, qO) lies in ~2 

(q/O, qO ) ~ ni  (3.4) 

The control process is divided into two main stages. In the first stage, the motion is performed with 
a constant control until a phase point of the subsystem reaches the SC. In this case, by (2.3), (2.5), (3.1) 
and (3.2), we have (to fix our ideas, we assume that ~gi(q°i, il °) < O) 

qi ~ - X i  ( 3 . 5 )  

It follows from (3.5) that the quantity qi decreases and, by virtue of (3.3), (3.4) and (3.5), the inequalities 

dili <~ Xi dfi+(ql) qi >0; dili 
dq-'-~ fi+(qi) = dq----~' ~ i > O ,  qi<O 

are satisfied. 
Therefore, for any perturbations, the phase trajectory of the subsystem under consideration does not 

go out beyond the limits of the domain ~i and reaches one of the branches of the SC. This fact is proved 
in a similar way when Illi(q O, qO) > 0). 

On reaching the SC, the phase point continues to move along it into the terminal state. The parabolic 
branches of the SC coincide with the phase trajectories of subsystem (2.3) in the case of a control U~. 
selected in accordance with (3.1) and (3.2) and when Vi = -piUi . If, however, V/# -piUi, the motion 
occurs along a parabolic segment in the same way but in a sliding mode. In this,case, the control Ui 
takes the values --. Ui ° with infinitely frequent changes of sign so that on average q'i = X/or  q'i = -X/ 
for the corresponding branches of the switching curve. 

Hence, if conditions (3.3) and (3.4) are satisfied for all the subsystems (2.3) at the initial instant of 
time, then their phase trajectories as a whole lie in the corresponding domains D+ In this case, constraints 
(1.3) are satisfied and the inequalities 

Iqil~ < (2diXi) ~,  d i = q~ - q; (3.6) 

also hold. A certain possible phase trajectory of subsystem (2.3) is shown in Fig. 1. The direction of 
increasing time t is indicated by the arrows. 

It has been shown [1] that the time for the motion of the ith subsystem (2.3) is a maximum in the 
case of the "worst" perturbation Vi = -PiUi and is equal to 

• o .o X,i{2t(qO)2/2 Xi(qOi_q}).t,]y2_ilOi.ti} Xi (qi ,qi ) = 

Yi=sign~i(q°,?l°i), ~gi~0; y i=+ l ,  ~gi=0 
(3.7) 

Since the time x required to bring system (1.1) to the terminal state (1.12) is defined as the greatest 
of the control times for each of the subsystems (2.3), we obtain the estimate 

x ~< x* = max/(x~) (3.8) 

4. F I N D I N G  THE P E R M I S S I B L E  P A R A M E T E R S  X i 

Control (3.1) can only be used when inequalities (2.5) are satisfied throughout the whole of the control 
process. We shall now find those control parameters 9(,. for which the above-mentioned relations are, 
in fact, satisfied. 

We will first estimate the moduli of the quantities V/. When Ix < Imin, using relations (1.4)-(1.6), we 
obtain 
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IVil~< G° + / lanai / (4.1) 

Here, Imin is the least of the quantities Ii and SO is a constant, which restricts the absolute values of the 
functions Si(q,/t, t) from (2.2) for control (3.1) with parameters Xz.. Subject to constraints (1.7), (1.10) 
and (3.6), we have 

(4.2) 

x ... . .  x . )  

In inequalities (2.5), we express Pi in terms of the control parameters X/using (3.2) and, instead of 
the quantities I V/I, we substitute their estimates from (4.1). We obtain 

(4.3) 

If the parameter ~t is sufficiently small, such that the condition 

it< 
mini(U ° - G ° ) l m i .  

mini(U ° -G°)+[~(U° + G°)2 ] '~ 
(4.4) 

is satisfied, the expressions on the right-hand sides of inequalities (4.3) are positive. Since S°(X) ~ 0 
when X~. ~ 0, positive values of X/can always be found, for which inequalities (4.3) and, consequently, 
inequalities (2.5) are satisfied. 

We will now sum up the results we have obtained in the form of a theorem. 

Theorem 1. Suppose that condition (4.4) is satisfied. Then, the synthesis of the control Ui(qi, t~/), which 
solves Problem 1, is specified by relations (3.1) in which the parameters X~. must be chosen in such a 
way that inequalities (4.3) are satisfied. This control transfers system (1.1) from the initial state (1.11) 
to the specified terminal state (1.12), if, at the initial instant of time, the quantities tj ° satisfy the 

0 _< O <  , 0 constraintsf~- (q i) ~ q i"~-fi (qi). In this case, the motion of the system lies in the domain D from (1.3) 
and the time of the control process x does not exceed x*, which is determined by expressions (3.7) and 
(3.8). 

We will now describe a method of selecting the permissible values of X/. We shall seek these values 
in the form 

Xi = y2di (4.5) 

where the magnitude of Yis still unknown. We substitute (4.5) into inequalities (4.3) and reduce them 
to the form 

l ° + 2giY <~ hi (4.6) 

where gi, h i are positive coefficients, the explicit form of which immediately follows from (4.2) and (4.3). 
The solution of the system of inequalities (4.6) can be written in the form 

y ~< min i[(g2 + hi)Y2 _ gi] 

Selecting the maximum value of Y which satisfies the inequality obtained, we calculate the control 
parameters X/using formulae (4.5). 
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5. APPLICATIONS TO ROBOT CONTROL PROBLEMS 

We will now consider a manipulating robot consisting ofn absolutely rigid links joined to one another 
by means of cylindrical or prismatic hinges. The position of the links of the robot in space is characterized 
by their relative angles of rotation (in the case of cylindrical hinges) or relative displacements (in the 
ease of prismatic hinges). We will take these angles and displacements as the generalized coordinates 
q = (ql, .  • •, qn). If the equations of motion of the robot are represented in the form (1.1) and (1.2), 
the moments of the forces with respect to the axes of the cylindrical hinges and the forces acting in the 
direction of the displacements in prismatic hinges will play the role of generalized forces. In this ease, 
Ui are the control forces or the moments of the forces produced by the electromechanical drives of the 
robot and Qi are all the remaining external and internal forces and moments which arise as the result 
of the action of gravitational forces, friction, various perturbations, etc. We shall next assume that the 
forces Qi can be represented in the form (1.8)-(1.10). 

The kinetic energy of the robot T is made up of the kinetic energy of the motion of the links 
Tl(q, (t) and the kinetic energy of the motion of the rotors of the electric motors T2(q, il, IV). Here, 
N = (N1,. • . ,  Am) are the gear ratios of the reduction gears, which are treated as parameters. We shall 
assume that Ni I> 1 and neglect the inertia of the moving parts of the reduction gears. According to 
Krnig's theorem, the kinetic energy of the ith rotor is equal to the sum of the kinetic energy which a 
point mass with a mass equal to the mass of the rotor, located at its centre of inertia, would have and 
the kinetic energy of rotation of the rotor, that is 

Ti2(q,q, Ni) = T~i (q, il)+ Ti~(q, il, Ni) 

Suppose that Ji, Ji" are the moments of inertia of the ith rotor about its axis of rotation and an axis 
passing through the centre of inertia perpendicular to the axis of rotation. Then, if the angular velocity 
vector of the stator of the ith electric motor has a projection on the axis of rotation of the rotor equal 
to ~. and a perpendicular component equal to to~, we have 

Ti~(q, gl, Ni) = ~[Ji(Nigli +~i)  1 + J[to~ 2 ] 

The angular velocities toi, 0~ are linear combinations of the generalized velocities tll . . . . .  tln with 
coefficients which depend on q. The kinetic energy of the robot can therefore be represented in the 
form 

r = l ~ j j ( N j [ t j ) 2  + l  Nmax(B[t, it) 

where B(q, N) is a bounded matrix such that the inequality 

IB(q,N)zI<~ ~.lzl, ~. = const 

(5.1) 

(5.2) 

is satisfied in the case of an arbitrary vector z. 
The largest and smallest of the gear rations N1 . . . . .  Nn are henceforth denoted by Nm~ and Nmin. 
We substitute (5.1) into the Lagrange equations in the form of (1.1) and obtain 

N 2 Jigli + Nma x [B(q, N)~] i = U i + G i + S i (q, gl, t, N) 

We divide the ith equation of (5.3) by Ni and make the change of variables 

(5.3) 

Pi = Niqi (5.4) 

As a result, we obtain 

JiPi at- UmaxUTl~. Bo'NIIpj = N71 (Ui + Gi + Si) (5.5) 
1 

Allowing for the fact that Ni-lui  = Mi, where Mi is the electromagnetic moment produced by the 
electric motor, we reduce system (5.5) to the form 

(J + B)~6 = M +G* + S* (5.6) 
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J=d i ag ( J  1 ..... J.), B=NmaxHBH, M=(M~ ..... M.) 

G* = HG, S* = HS, H = diag(N~ q ..... N~ I) (5.7) 

Consequently, when account is taken of the change of variables (5.4) and the notation (5.7), the 
equations of motion can be represented in the form of (1.5) and (2.1), and, by (5.2) and (5.7), we have 
the inequality 

i&l < ,*Jzl. ,"  =  'm JV oZ (5.8) 

which is analogous to constraint (1.6). The initial and final conditions can be represented in the form 
(1.11) and (1.12). 

We will now consider different ways of formulating control problems. 
1. Suppose that the constraints 

I Mil<~ M ° (5.9) 

are imposed on the control moments of the forces Mi produced by the electric motors. In this case, the 
results obtained in the preceding sections, which have been summarized in Theorem 1, can be used to 
construct the control. Inequality (4.4), rewritten in the notation of system (5.6), defines the permissible 
values of the parameter ~t*. On substituting its value from (5.8) into this inequality instead of ~t* we 
obtain a constraint on the possible values of the gear ratios of the reduction gears 

2 7~ 
Nmin > 
Nmax Jmin 1+ mini(MO_G~O) (5.10) 

Here Gi *0 is a constant which bounds the absolute values of the functions Gi*, and Jmin is the least of 
the moments of inertia of the rotors J1 . . . . .  J,. 

2. Sul~pose that the voltages applied to the windings of the electric motors play the role of controls. 
We augment the equations of motion (5.6) with the balance equations for the voltages in the rotor circuits 
and relations associating the moments Mi with the currents 

L i + Rij i + k f p  i = u i, Mi = kMjl (5.11) 

Here Li is the coefficient of inductance, R i is the electrical resistance, k/e, k ~  are constant coefficients, 
and ui is the voltage in the rotor circuit of the ith motor. The first term in the first equation of (5.11) 
is usually small compared with the remaining terms and the expression 

M, = ki" R;-' - k f  p, ) 

is therefore obtained from (5.11) and, when this is substituted into (5.6), we obtain 

Suppose that the constraints 

(J +~*B)~6=U*+G*+ S** 

S**=S*-A,b, A " M E -i u z -t = diag(kl kl R i ..... k n k n R,] ) 
u" = . . . . .  k R 'un) 

(5.12) 

luil<~ u ° (5.13) 
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are imposed on the control voltages. 
The constraints (5.13) are transformed into constraints on the components of  the vector U* from 

(5.12) 

I l l * l •  irl*0 
t~ i , '~. u i -~ . i ~ i l u i  

i . M  D -  O (5.14) 

The equations of motion (5.12) are again reduced to the form (1.5) and (2.1). 
Inequalities (5.14) are of  the same form as relations (1.4). It is obvious that in this case we can use 

the method of control considered. By Theorem 1, we obtain a constraint which is analogous to (5.10) 

N , ~ , > j m i ,  I+ mini(k~R.i.,uOi_oi.O) j (5.15) 

So, if the year ratios of the drives and the parameters of the robot are such that inequalities (5.10) 
and (5.15) are satisfied, it is possible to construct a control which transfers the system under consideration 
from an initial state to a specified state in a finite time. The control takes account of the existence of 
perturbations and structural constraints. 
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